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Abstract: In this paper, we introduce the concept of second order partial
derivatives in the extended sense for nonconvex functions and prove a formula
computing the extended Hessian in terms of the second order partial derivatives
in the extended sense. We show that the sum, difference, product, and quotient
of functions that are twice differentiable at a point are functions that are twice
differentiable at that point in the extended sense. We also show why the coun-
terpart of the second order differentiability in the extended sense on Rn does not
appear in variational analysis.
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1 Introduction

Classical second order differentiability is an important property from both theoretical
and practical viewpoints. However, since many functions from optimization and its appli-
cations do not have this property, various generalized second order differentiation notions
have been proposed and studied extensively in the literature ([2], [5]).

In 1998, Rockafellar and Wets [5] introduced the notion of second order differentiability
of a function in the extended sense by removing the differentiability in some negligible
subsets of a neighborhood of the considered point from the definition of classical second
order differentiability. Although the extended second order differentiability is weaker than
the classical counterpart, it still ensures the function of having a quadratic expansion. A
function f : Rn → R̄ is twice differentiable at x̄ in the extended sense if and only if f is
finite and locally lower semicontinuous at x̄ and the subgradient mapping ∂f : Rn ⇒ Rn is
differentiable at x̄. Other nice property of such functions can be found in [5, Chapter 13].

Our goal is to develop a system of computational rules for extended Hessian. We have
achieved results:

The first result, we have established the extended Hessian expression formula through
extended second order partial derivatives.

The second result, we have established the extended Hessian expression formula of the
sum, difference, product, and quotient functions of two functions which are twice differen-
tiable at the same point in the extended sense.

Together with the differentiability at a point, the differentiability on Rn is also a re-
markable property from both theoretical and practical viewpoints. So it is curious why the
counterpart of the extended second order differentiability does not appear in variational
analysis. That is another interesting result we obtained.
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2 Preliminaries

This section recalls some notions and their properties from variational analysis ([2], [5]),
which are used in the sequel. Let Ω be a subset of the Euclidean space Rn and x̄ ∈ Ω. Recall
[2] that the regular normal cone to Ω at x̄ ∈ Ω is the set N̂Ω(x̄) given by

N̂Ω(x̄) :=

{
v ∈ Rn

∣∣ lim sup
x

Ω→x̄

〈v, x− x̄〉
‖x− x̄‖

≤ 0

}
,

where x Ω→ x̄ means that x → x̄ with x ∈ Ω; the (Mordukhovich) limiting/basic normal
cone to Ω at x̄ ∈ Ω is the set NΩ(x̄) defined by

NΩ(x̄) :=
{
v ∈ Rn | there existsxk

Ω→ x̄, vk ∈ N̂Ω(xk) with vk → v
}
,

which was introduced by Mordukhovich [3] in an equivalent form. If x̄ 6∈ Ω, one puts
N̂Ω(x̄) = ∅ by convention. Let f : Rn → R := R∪{∞} and let x̄ ∈ domf :=

{
x ∈ Rn| f(x) <

∞
}
. Recall [2] that the limiting subdifferential (also known as the Mordukhovich/basic

subdifferential) of f at x̄ is given by

∂f(x̄) :=
{
v ∈ Rn | (v,−1) ∈ Nepif (x̄, ȳ)

}
,

where epi f :=
{

(x, r) ∈ Rn × R| r ≥ ϕ(x)
}
is the epigraph of f .

One says f is Lipschitz on U ⊂ Rn if there exists a real number κ > 0 such that

|f(x)− f(u)| ≤ κ‖x− u‖ for all x, u ∈ D;

if, in addition, U is a neighbourhood of x̄, then f is said to be locally Lipschitz around x̄. If
f is locally Lipschitz around x̄, the Clarke subddiferential of f at x̄ is defined as the convex
hull of ∂f(x̄), and will be denoted by ∂Clf(x̄) in the sequel.
Recall [5] that f is twice differentiable at x̄ (in the classical sense) if it is differentiable on
a neighborhood U of x̄ and there exists a n× n matrix H such that

lim
x

U→x̄

[
∇f(x)

]T − [∇f(x̄)
]T −H(x− x̄)

‖x− x̄‖
= 0,

where ∇f(x̄) is written as a row vector. In this case, the matrix H is necessarily unique,
called the Hessian (matrix) of f at x̄, and is denoted by ∇2f(x̄).

Definition 2.1. Let a function f : Rn → R̄. We say that
(i) f is twice differentiable at x̄ = (x̄1, . . . , x̄i, . . . , x̄n) in the extended sense if it is

differentiable at x̄, and there exists a n× n matrix A, a neighborhood U of x̄ and a subset
D of U with µ(U\D) = 0 such that f is Lipschitz on U, differentiable on D, and

lim
x
D→x̄

[
∇f(x)

]T − [∇f(x̄)
]T −A(x− x̄)

‖x− x̄‖
= 0,
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where µ denotes the Lebesgue measure on Rn. This matrix A, necessarily unique, is then
called the Hesian (matrix) of f at x̄ in the extended sense and is likewise denoted by∇2f(x̄).

(ii) f is said that has second order partial derivatives for xi at x̄ in the extended sense
(i = 1, 2, . . . , n) if f has partial derivatives ∂f

∂xj
(x̄), (j = 1, 2, . . . , n) and

∂2f

∂xi∂xj
(x̄) := lim

xi
Di→x̄i

∂f
∂xj

(x̄1, . . . , xi, . . . , x̄n)− ∂f
∂xj

(x̄1, . . . , x̄i, . . . , x̄n)

xi − x̄i

exists (j = 1, 2, . . . , n). Where Di is a subset of Ui ⊂ R satisfies µ(Ui \ Di) = 0 for some
neighborhood Ui of x̄i.

From definition, it is easy to see that if f is twice differentiable at x̄ then it is twice
differentiable at x̄ in the extended sense, and the Hessian and the extended Hessian coincide.

Example 2.2. The function f : R→ R given by

f(x) =


x4 if x ≥ 1,
(2n+1)(2n2+2n+1)

n3(n+1)3 x+ 1
(n+1)3 − 1

n3 if x ∈
[

1
n+1 ,

1
n

)
, n = 1, 2, ...

0 if x = 0,

f(−x) if x < 0,

is twice differentiable at x̄ = 0 in the extended sense, but it is not twice differentiable at x̄
in the classical sense. Indeed, we see that f is differentiable at x̄, and

∇f(x) =


4x3 if x > 1,
(2n+1)(2n2+2n+1)

n3(n+1)3 if x ∈
(

1
n+1 ,

1
n

)
, n = 1, 2, ...

0 if x = 0,

−∇f(−x) if x ∈ (−∞, 0) \ {− 1
n | n ∈ N∗}.

Put U = (−1, 1), D = (−1, 1) \ { 1
n | n ∈ Z∗}, and A = 0. Then µ(U\D) = 0, f is Lipschitz

on U with constant κ = 1, and differentiable on D, where µ is the Lebesgue measure on R.
Furthermore, for each x ∈

(
1

n+1 ,
1
n

)
with n ∈ N∗ we have∣∣∣∣∣

[
∇f(x)

]T
−
[
∇f(x̄)

]T
−A(x−x̄)

‖x−x̄‖

∣∣∣∣∣ = (2n+1)(2n2+2n+1)
n3(n+1)3|x|

≤ (2n+1)(2n2+2n+1)
n3(n+1)2

→ 0 as n→∞.

This implies

lim
x
D→x̄

[
∇f(x)

]T − [∇f(x̄)
]T −A(x− x̄)

‖x− x̄‖
= 0.

Therefore, f is twice differentiable at x̄ in the extended sense. On the other hand, since f
is not differentiable at each point 1

n with n ∈ Z∗. Hence, f is not twice differentiable at x̄
in the classical sense. This tells us that the extended twice differentiability does not imply
the classical twice differentiability.
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Remark 2.3. The concept twice differentiable of function f : Rn → R in the extended
sense stated in Definition 2.1(i) coincides with the twice differentiable of function f in the
extended sense stated in [5, Definition 13.1 (b)]. However, with this concept statement
in [5, Definition 13.1 (b)], because Df ∩ Dg can not be the domain of ∇(f + g), ∇(f.g)

and ∇(fg ), where Df and Dg are the domains of ∇(f) and ∇(g), respectively. This makes
difficulty to construct mathematical operations for functions that are twice differentiable
in the extended sense.

3 Main results

In this section, we present the results obtained on the calculation rule for the extended
Hessian. Besides that, we also prove why the counterpart of the second order differentiability
in the extended sense on Rn does not appear in variational analysis.

Proposition 3.1. Suppose that the function f : Rn → R̄ is a twice differentiable at x̄ in
the extended sense. Then

∇2f(x̄) =
[ ∂2f

∂xi∂xj
(x̄)
]n,n
i,j=1

. (1)

Proof. Since f is twice differentiable at x̄ in the extended sense, from Definition 2.1(ii) f
has second order partial derivatives at x̄ in the extended sense. Suppose that

∇2f(x̄) :=
[
aij

]n,n
i,j=1

we have

lim
x
D→x̄

[
∇f(x)

]T − [∇f(x̄)
]T −∇2f(x̄)(x− x̄)

‖x− x̄‖
= 0,

with D = D1 × . . . × Dn is a subset of U satisfies µ(U \ D) = 0, for some neighborhood
U := U1 × . . .× Un of x̄. Therefore, µ(Ui \Di) = 0 for all i = 1, . . . , n and we get

0 = lim
x
D→x̄

(
∂f
∂x1

(x),..., ∂f
∂xn

(x)
)
−
(

∂f
∂x1

(x̄),..., ∂f
∂xn

(x̄)
)
−
[
aij

]n,n

i,j=1

.(x1−x̄1,...,xn−x̄n)T

‖x−x̄‖

= lim
x
D→x̄

(
∂f
∂x1

(x)− ∂f
∂x1

(x̄)−a11(x1−x̄1)−...−an1(xn−x̄n),..., ∂f
∂xn

(x)− ∂f
∂xn

(x̄)−a1n(x1−x̄1)−...−ann(xn−x̄n)

)
‖x−x̄‖

= lim
x
D→x̄

( ∂f
∂x1

(x)− ∂f
∂x1

(x̄)−a11(x1−x̄1)−...−an1(xn−x̄n)

‖x−x̄‖ , . . . ,
∂f
∂xn

(x)− ∂f
∂xn

(x̄)−a1n(x1−x̄1)−...−ann(xn−x̄n)

‖x−x̄‖

)
.

Hence, for each i = 1, . . . , n we choose x = (x̄1, . . . x̄i−1, xi, x̄i+1 . . . , x̄n), for each j =
1, . . . , n we have

lim
xi

Di→x̄i

∂f
∂xj

(x)− ∂f
∂xj

(x̄)− aji(xi − x̄i)
‖xi − x̄i‖

= 0
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Combining this with Definition 2.1 (ii), we get

aij =
∂2f

∂xi∂xj
(x̄) for all i, j = 1, . . . , n.

This shows that

∇2f(x̄) =
[ ∂2f

∂xi∂xj
(x̄)
]n,n
i,j=1

.

The proof is complete. 2

Representation (1) was mentioned by Rockafellar in his paper [4] for convex functions
without proof.

Theorem 3.2. Let f, g : Rn → R and x̄ ∈ Rn. Assume that f, g are twice differentiable at
x̄ in the extended sense. Then

(i) f + g is twice differentiable at x̄ in the extended sense, with the extended Hessian
matrix given by ∇2(f + g)(x̄) := ∇2(f)(x̄) +∇2(g)(x̄).

(ii) αf is twice differentiable at x̄ in the extended sense, where α ∈ R is a given real
constant, with the extended Hessian matrix given by ∇2(αf)(x̄) := α∇2(f)(x̄).

(iii) f.g is twice differentiable at x̄ in the extended sense, with the extended Hessian ma-
trix given by ∇2(f.g)(x̄) := g(x̄)∇2f(x̄)+

[
∇f(x̄)

]T
.∇g(x̄)+

[
∇g(x̄)

]T
.∇f(x̄)+f(x̄)∇2g(x̄).

(iv) If in addition that g(x̄) 6= 0 then f
g is also twice differentiable at x̄ in the extended

sense, with the Hessian matrix given by

∇2(
f

g
) :=

∇2f(x̄)

g(x̄)
−
[
∇f(x̄)

]T
.∇g(x̄)

[g(x̄)]2
−
[
∇g(x̄)

]T
.∇f(x̄)

[g(x̄)]2
−f(x̄).

g(x̄)∇2g(x̄)− 2
[
∇g(x̄)

]T∇g(x̄)

[g(x̄)]3
.

Proof. Since f, g are twice differentiable at x̄ in the extended sense. We have µ(U \Df ) =
0, µ(U \Dg) = 0 for some neighborhood U of x̄, where µ is the Lebesgue measure on Rn.
Hence,

0 ≤ µ
[
U \

(
Df ∩Dg

)]
= µ

[(
U \Df ∪

(
U \Dg

))]
≤ µ

(
U \Df

)
+ µ

(
U \Dg

)
= 0,

which implies µ
[
U \

(
Df ∩Dg

)]
= 0. Since f, g are locally Lipschitz at x̄, there exist ε > 0,

κ1 > 0, κ2 > 0 such that
|f(x1)− f(x2)| ≤ κ1 |x1 − x2| ,

|g(x1)− g(x2)| ≤ κ2 |x1 − x2| ,

for all x1, x2 ∈ Bε(x̄). Put

m1 = min{|f(x)| | x ∈ Bε(x̄)}, M1 = max{|f(x)| | x ∈ Bε(x̄)},

m2 = min{|g(x)| | x ∈ Bε(x̄)}, M2 = max{|g(x)| | x ∈ Bε(x̄)}.

(i) f + g is twice differentiable at x̄ in the extended sense:
Indeed, since f, g are differentiable at x̄ then f + g is also differentiable at x̄. For any
x1, x2 ∈ Bε(x̄), we have∣∣f(x1) + g(x1)−

(
f(x2) + g(x2)

)∣∣ ≤ |f(x1)− f(x2)|+ |g(x1)− g(x2)| ≤ (κ1 +κ2) |x1 − x2| .
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This infers that f + g is Lipschitz continuous on Bε(x̄). On the other hand, we have

0 ≤

∥∥∥∥[∇f(x)
]T

+
[
∇g(x)

]T
−
([
∇f(x̄)

]T
+
[
∇g(x̄)

]T)
−
(
∇2f(x̄)+∇2g(x̄)

)
(x−x̄)

∥∥∥∥
‖x−x̄‖

≤

∥∥∥∥[∇f(x)
]T
−
[
∇f(x̄)

]T
−∇2f(x̄)(x−x̄)

∥∥∥∥
‖x−x̄‖ +

∥∥∥∥[∇g(x)
]T
−
[
∇g(x̄)

]T
−∇2g(x̄)(x−x̄)

∥∥∥∥
‖x−x̄‖

→ 0 as x
Df∩Dg−→ x̄.

This implies that

lim

x
Df∩Dg
−→ x̄

([
∇(f + g)(x)

]T)− ([∇(f + g)(x̄)
]T)− (∇2f(x̄) +∇2g(x̄)

)
(x− x̄)

‖x− x̄‖
= 0.

In other words ∇f +∇g is differentiable at x̄ relative to Df ∩Dg. So, we show that f + g
is differentiable at x̄, Lipschitz on Bε(x̄) and ∇(f + g) is differentiable at x̄ relative to
Df ∩ Dg. It shows that f + g is twice differentiable at x̄ in the extended sense, with its
extended Hessian matrix is ∇2f(x̄) +∇2g(x̄).

(ii) αf is twice differentiable at x̄ in the extended sense:
Indeed, since f is differentiable at x̄ then αf is also differentiable at x̄. For any x1, x2 ∈
Bε(x̄), we have

|αf(x1)− αf(x2)| ≤ |α| |f(x1)− f(x2)| ≤ |α|κ1 |x1 − x2| .

This infers that αf is Lipschitz continuous on U = Bε(x̄). On the other hand, we have

lim

x
Df−→x̄

α
[
∇f(x)

]T
−α
[
∇f(x̄)

]T
−α∇2f(x̄)(x−x̄)

‖x−x̄‖ = α lim

x
Df−→x̄

[
∇f(x)

]T
−
[
∇f(x̄)

]T
−∇2f(x̄)(x−x̄)

‖x−x̄‖ = 0.

Therefore, αf is twice differentiable at x̄ in the extended sense, with its extended Hessian
matrix is α∇2f(x̄).

(iii) f.g is twice differentiable at x̄ in the extended sense:
Indeed, since f, g are differentiable at x̄, f.g is also differentiable at x̄. For any x1, x2 ∈ Bε(x̄),
we have
|f(x1).g(x1)− f(x2).g(x2)| ≤ |f(x1).g(x1)− f(x1).g(x2)|+ |f(x1).g(x2)− f(x2).g(x2)|

= |f(x1)| |g(x1)− g(x2)|+ |g(x2)| |f(x1)− f(x2)|
≤ (M1.κ2 +M2κ1) |x1 − x2| .

This shows that f.g is Lipschitz on U = Bε(x̄). Moreover, for

A := g(x̄)∇2f(x̄) +
[
∇f(x̄)

]T
.∇g(x̄) +

[
∇g(x̄)

]T
.∇f(x̄) + f(x̄)∇2g(x̄)

we have

f(x).
[
∇g(x)

]T
+g(x)

[
∇f(x)

]T
−f(x̄).

[
∇g(x̄)

]T
−g(x̄)

[
∇f(x̄)

]T
−A(x−x̄)

‖x−x̄‖

=
f(x)
[
∇g(x)

]T
−f(x̄)

[
∇g(x̄)

]T
−
[[
∇g(x̄)

]T
.∇f(x̄)+f(x̄)∇2g(x̄)

]
(x−x̄)

‖x−x̄‖

+
g(x)
[
∇f(x)

]T
−g(x̄)

[
∇f(x̄)

]T
−
[[
∇f(x̄)

]T
.∇g(x̄)+g(x̄)∇2f(x̄)

]
(x−x̄)

‖x−x̄‖ .

(2)
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On the other hand,

f(x)
[
∇g(x)

]T
−f(x̄)

[
∇g(x̄)

]T
−
[[
∇g(x̄)

]T
.∇f(x̄)+f(x̄)∇2g(x̄)

]
(x−x̄)

‖x−x̄‖

=

[
∇g(x)

]T [
f(x)−f(x̄)−∇f(x̄)(x−x̄)

]
‖x−x̄‖ +

([
∇g(x)

]T
−
[
∇g(x̄)

]T)
∇f(x̄)(x−x̄)

‖x−x̄‖

+
f(x̄)

[[
∇g(x)

]T
−
[
∇g(x̄)

]T
−∇2g(x̄)(x−x̄)

]
‖x−x̄‖

→ 0 as x
Df∩Dg−→ x̄.

(3)

Similarly, we also have

g(x)
[
∇f(x)

]T
−g(x̄)

[
∇f(x̄)

]T
−
[[
∇f(x̄)

]T
.∇g(x̄)+g(x̄)∇2f(x̄)

]
(x−x̄)

‖x−x̄‖

→ 0 as x
Df∩Dg−→ x̄.

(4)

From (2), (3) and (4) it follows

lim

x
Df∩Dg
−→ x̄

f(x).
[
∇g(x)

]T
+ g(x)

[
∇f(x)

]T − f(x̄).
[
∇g(x̄)

]T − g(x̄)
[
∇f(x̄)

]T −A(x− x̄)

‖x− x̄‖
= 0.

Therefore, f.g is twice differentiable at x̄ in the extended sense, with the extended Hessian
matrix is A = g(x̄)∇2f(x̄) +

[
∇f(x̄)

]T
.∇g(x̄) +

[
∇g(x̄)

]T
.∇f(x̄) + f(x̄)∇2g(x̄).

(iv) f
g is twice differentiable at x̄ in the extended sense. Firstly, we prove that 1

g
is twice differentiable at x̄ in the extended sense, with the extended Hessian matrix is
g(x̄)∇2g(x̄)−2[∇g(x̄)]T∇g(x̄)

[g(x̄)]3
. Indeed, since g is differentiable at x̄ and g(x̄) 6= 0, we have known

that 1
g is also differentiable at x̄. Without loss of generality, assume g(x) 6= 0 for all

x ∈ Bε(x̄). Then we have m2 > 0. For any x1, x2 ∈ Bε(x̄), we have∣∣∣∣ 1

g(x1)
− 1

g(x2)

∣∣∣∣ =
|g(x1)− g(x2)|
|g(x1)| . |g(x2)|

≤ κ2

m2
2

|x1 − x2| .

This shows that 1
g is Lipschitz on Bε(x̄).On the other hand, forB := g(x̄)∇2g(x̄)−2[∇g(x̄)]T∇g(x̄)

[g(x̄)]3

we have[
∇g(x)

]T
[g(x)]2

−

[
∇g(x̄)

]T
[g(x̄)]2

−B(x−x̄)

‖x−x̄‖

=
[g(x̄)]3

[
∇g(x)

]T
−g(x̄)[g(x)]2

[
∇g(x̄)

]T
−g(x̄)[g(x)]2∇2g(x̄)(x−x̄)+2[g(x)]2[∇g(x̄)]T∇g(x̄)(x−x̄)

[g(x)]2[g(x̄)]3‖x−x̄‖

= 1
[g(x̄)]2

.

[
∇g(x)

]T
−
[
∇g(x̄)

]T
−∇2g(x̄)(x−x̄)

‖x−x̄‖ − 2
[
∇g(x̄)

]T
[g(x̄)]3

.g(x)−g(x̄)−∇g(x̄)(x−x̄)
‖x−x̄‖

+ 1
[g(x)]2[g(x̄)]3

.g(x̄)−g(x)
‖x−x̄‖ .

[
[g(x̄)]2

[
∇g(x)

]T
+ g(x̄)g(x)

[
∇g(x)

]T − 2[g(x)]2
[
∇g(x̄)

]T ]
→ 0 as x

Dg→ x̄.

83



Ha Anh Tuan / Some results on second order differentiability in the extended sense of functions

Which implies that

lim
x
Dg→ x̄

[
∇g(x)

]T
[g(x)]2

−
[
∇g(x̄)

]T
[g(x̄)]2

−B(x− x̄)

‖x− x̄‖
= 0.

Thus − ∇g
[g(x̄)]2

is differentiable at x̄ relative to Dg. Therefore, 1
g is twice differentiable at x̄

in the extended sense and its extended Hessian is −B.
Finally, since f, 1

g are twice differentiable at x̄ in the extended sense, by (iii) we get f
g is

twice differentiable at x̄ in the extended sense, with the Hessian matrix is ∇2(fg ) := ∇2f(x̄)
g(x̄) −[

∇f(x̄)
]T
.∇g(x̄)

[g(x̄)]2
−
[
∇g(x̄)

]T
.∇f(x̄)

[g(x̄)]2
− f(x̄).

g(x̄)∇2g(x̄)−2
[
∇g(x̄)

]T
∇g(x̄)

[g(x̄)]3
. The proof is complete. 2

Lemma 3.3. ([1, Theorem 2.3.7]). Let f be a Lipschitz function on an open subset of Rn
containing the line segment [x, y] with x, y ∈ Rn, x 6= y. Then, there exists c ∈ (x, y) such
that

f(y)− f(x) ∈
〈
∂Clf(c), y − x

〉
. (5)

Lemma 3.4. ([1, Theorem 2.5.1]). Let f be Lipschitz on a neighborhood U of x̄ ∈ Rn, and
differentiable on a subset D of U with µ(U\D) = 0, where µ is the Lebesgue measure on Rn.
Then, one has

∂Clf(x̄) = co
{

lim
n→∞

∇f(xk)| xk
D→ x̄ and lim

k→∞
∇f(xk) exists

}
.

From definitions of the second order differentiability at a point in the extended sense,
it is natural to define the second order differentiability at every point in the extended sense
as follows: A function f : Rn → R is said to be twice differentiable on Rn in the extended
sense if it is twice differentiable at every point x ∈ Rn in the extended sense.

In contrast to the extended second order differentiability, it turns out that the extended
second order differentiability coincides with the classical one.

Theorem 3.5. If a function f : Rn → R be twice differentiable at every point x ∈ Rn in
the extended sense then f is twice differentiable at every point x ∈ Rn in the classical sense.

Proof. Indeed, since f is twice differentiable at every point x ∈ Rn in the extended sense,
then f is differentiable at every point x ∈ Rn. It means that f is differentiable on Rn.
Moreover, there exist a matrix n × n A, a neighborhood U of x and subset D of U with
µ(U \D) = 0 such that

lim
u

D→x

[
∇f(u)

]T − [∇f(x)
]T −A(u− x)

‖u− x‖
= 0 (6)

where µ denotes the Lebesgue measure on Rn. Assume without loss of generality that U is
an open convex set. Since f is Lipschitz on U, by Lemma 3.4, we have

∂Clf(x) = co
{

lim
k→∞

∇f(xk)| xk
D→ x such that lim

k→∞
∇f(xk) exists

}
, (7)
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We then show that

lim
u→x

[
∇f(u)

]T − [∇f(x)
]T −A(u− x)

‖u− x‖
= 0.

Take any ε > 0. By (6) there exists an open convex neighborhood V of x̄ such that V ⊂ U
and

‖
[
∇f(u′)

]T − [∇f(x)
]T −A(u′ − x)‖ ≤ ε‖u′ − x‖ for all u′ ∈ D ∩ V. (8)

Let u ∈ V. Noting that V ⊂ U and ∇f(x) ∈ ∂Clf(x), ∇f(u) ∈ ∂Clf(u), by (7), there exist
s ∈ N∗, αi, βj ∈ [0, 1], xik ∈ D∩V, u

j
k ∈ D∩V for every i, j = 1, . . . , s and k ∈ N∗ such that

s∑
i=1

αi = 1,
s∑
j=1

βj = 1, lim
k→∞

xik = x, lim
k→∞

ujk = u,

and ∇f(x) =
s∑
i=1

αivix, ∇f(u) =
s∑
j=1

βjvju with vix = lim
k→∞

∇f(xik), v
j
u = lim

k→∞
∇f(ujk). This

together with (8) implies that

0 ≤ ‖
[
∇f(x)

]T − [∇f(u)
]T −A(x− u)‖

=
∥∥ s∑
i=1

αivix −
s∑
j=1

βjvju −A(x− u)
∥∥

=
∥∥ s∑
i=1

s∑
j=1

αiβj
(
vix − v

j
u −A(x− u)

)∥∥
≤ max

i,j∈{1,...,s}

∥∥vix − vju −A(x− u)
∥∥

= max
i,j∈{1,...,s}

‖ lim
k→∞

(
∇f(xik)−∇f(ujk)−A(xik − u

j
k)
)∥∥

≤ max
i,j∈{1,...,s}

lim
k→∞

(
ε
∥∥xik − ujk∥∥)

= ε‖x− u‖.

Therefore, ∇f is differentiable at x. This means that f is twice differentiable at x. Because
x ∈ Rn is taken any, f is twice differentiable on Rn. 2
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TÓM TẮT

MỘT SỐ KẾT QUẢ VỀ SỰ KHẢ VI BẬC HAI

THEO NGHĨA MỞ RỘNG CỦA HÀM SỐ

Hà Anh Tuấn
Khoa Khoa học cơ bản, Trường Đại học Giao thông vận tải TP Hồ Chí Minh

Ngày nhận bài 30/6/2021, ngày nhận đăng 28/9/2021

Trong bài báo này, chúng tôi giới thiệu khái niệm đạo hàm riêng bậc hai theo nghĩa
mở rộng cho các hàm không lồi và chứng minh một công thức tính toán các phần tử của
Hessian mở rộng theo các đạo hàm riêng cấp hai mở rộng. Chúng tôi cho thấy rằng tổng,
hiệu, tích và thương của các hàm khả vi hai lần theo nghĩa mở rộng tại cùng một điểm là
các hàm khả vi hai lần tại điểm đó theo nghĩa mở rộng. Chúng tôi cũng cho thấy vì sao
khái niệm khả vi hai lần theo nghĩa mở rộng trên Rn không xuất hiện trong phân tích biến
phân.

Từ khóa: Khả vi hai lần theo nghĩa mở rộng; đạo hàm riêng bậc hai theo nghĩa mở
rộng.
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